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Direct numerical simulations of a turbulent channel flow with passive scalar transport
are used to examine the relationship between small-scale velocity and scalar fields.
The Reynolds number based on the friction velocity and the channel half-width is
equal to 180, 395 and 640, and the molecular Prandtl number is 0.71. The focus is
on the interrelationship between the components of the vorticity vector and those of
the scalar derivative vector. Near the wall, there is close similarity between different
components of the two vectors due to the almost perfect correspondence between
the momentum and thermal streaks. With increasing distance from the wall, the
magnitudes of the correlations become smaller but remain non-negligible everywhere
in the channel owing to the presence of internal shear and scalar layers in the inner
region and the backs of the large-scale motions in the outer region. The topology of
the scalar dissipation rate, which is important for small-scale scalar mixing, is shown
to be associated with the organized structures. The most preferential orientation of the
scalar dissipation rate is the direction of the mean strain rate near the wall and that of
the fluctuating compressive strain rate in the outer region. The latter region has many
characteristics in common with several turbulent flows; viz. the dominant structures
are sheetlike in form and better correlated with the energy dissipation rate than the
enstrophy.

1. Introduction
The ability to mix scalar contaminants is one of the major characteristics of

turbulence (Antonia & Orlandi 2003). The large scales play a major part in
transporting the scalar, whereas the small scales are instrumental in implementing
the mixing at the molecular level. Small-scale scalar mixing is important in a number
of situations, e.g. turbulent combustion and environmental pollution (Namazian,
Schefer & Kelly 1988; Peters 2000; Warhaft 2000). A better understanding of the
mean scalar dissipation rate εθ is essential for optimizing the mixing of the scalar
contaminants. It is defined as

εθ = κ

(
∂θ

∂xi

)(
∂θ

∂xi

)
, (1.1)
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where θ denotes the temperature fluctuation; κ is the thermal diffusivity; the overbar
denotes an averaged value; x1, x2, x3 represent the streamwise, wall-normal and
spanwise directions, respectively, and are used interchangeably with x, y and z. The
summation rule is applied to i, j and k but not to Greek suffices. Unfortunately,
reliable information that is available for the scalar dissipation rate is rather limited
especially near walls, where the measurements of εθ (e.g. Sreenivasan, Antonia &
Danh 1977; Krishnamoorthy & Antonia 1987) become difficult due to the small
scales being affected by the mean and turbulent strain rates as well as the presence
of the wall.

Recently, direct numerical simulations (DNSs) have become an essential tool for
examining turbulence phenomena such as for assessing turbulence models, identifying
different types of structures and quantifying the role these play in the context of the
dynamics (e.g. Moin & Mahesh 1998). For a non-isothermal turbulent channel flow,
DNS was first performed by Kim & Moin (1989) for Reτ = uτδ/ν =180 (where uτ

is the friction velocity, ν the kinematic viscosity and δ the channel half-width) with
uniform internal heating at Pr = 0.1, 0.71 and 2.0. Subsequently, several DNS studies
were carried out, also for a channel flow, with different thermal boundary conditions
and different Reynolds and Prandtl numbers (e.g. Kasagi, Tomita & Kuroda 1992;
Kawamura, Abe & Shingai 2000). In all the previously mentioned studies, the focus
was mainly on large-scale transport.

DNSs for box turbulence (e.g. Ashurst et al. 1987; Ruetsch & Maxey 1991, 1992;
Holzer & Siggia 1994; Pumir 1994; Vedula, Yeung & Fox 2001; Brethouwer, Hunt &
Nieuwstadt 2003; Antonia & Orlandi 2004) have provided valuable information on
the small-scale features of this simple flow especially on the correlation between small-
scale velocity and scalar fluctuations (e.g. the review by Antonia & Orlandi 2003).
On the other hand, quite a few DNS studies were performed on the small scales in a
turbulent channel flow especially for the scalar dissipation rate (Kasagi et al. 1992;
Antonia & Kim 1994b; Johansson & Wikström 1999; Orlandi, Leonardi & Antonia
2006), which often encounter the low-Reynolds-number effects (Antonia & Kim
1994a). To date, there has been no attempt to investigate the small-scale scalar mixing
in the context of the organization of the flow. In particular, the relationship between
the streaks, quasi-streamwise vortices and large-scale shear layers (e.g. Robinson 1991)
and the scalar dissipation rate is yet to be examined in detail. It is well established
that the quasi-streamwise vortices play a major role in maintaining the streaks and
sustaining the turbulence in the vicinity of the wall. One may, therefore, expect that
these vortices will influence the small-scale mixing significantly in this region.

In the present study, we carry out DNSs of a turbulent channel flow with
passive scalar transport for a constant time-averaged heat-flux boundary condition
at Pr =0.71 and 3 values of Reτ (180, 395 and 640). The main objective is to study
the relationship between the scalar dissipation field and the vorticity field. Since the
fluctuating vorticity vector ωi (i = 1, 2 and 3 represent the streamwise, wall-normal
and spanwise directions, respectively) and scalar derivative vector θ,i ( ≡ ∂θ/∂xi) give
significant weighting to the small scales and given that the transport equations for
the mean enstrophy (ωiωi) and mean square scalar gradient (θ,i θ,i) are analogous in
form (Corrsin 1953), we attempt to quantify the correlation between ωi and θ,i as well
as that between ωiωi and θ,i θ,i . We also consider the Reynolds number dependence
of this correlation.

The high correlation between u1 and θ in the near-wall region (e.g. Iritani, Kasagi &
Hirata 1985; Antonia, Krishnamoorthy & Fulachier 1988; Kim & Moin 1989; Kasagi
et al. 1992; Kasagi & Ohtsubo 1993) and its association with the velocity and thermal
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streaks (e.g. Kim 1988; Kim & Moin 1989) implies a high correlation between
u1,2(� −ω3) and θ,2 as well as between u1,3(� ω2) and θ,3 in this region. (The
streamwise, wall-normal and spanwise velocity fluctuations are respectively denoted
by u1, u2 and u3; throughout this paper, u, v, w are sometimes used interchangeably
with u1, u2, u3.) A special effort is therefore made to quantify the correlations
between ω3 and θ,2 and between ω2 and θ,3 and examine these in conjunction with
instantaneous contours of these quantities in x–z, x–y and y–z planes. In particular,
the association with the near-wall organized structures (viz. the streaks, internal shear
layers and quasi-streamwise vortices) and the outer layer structures (viz. backs or
fronts of large-scale u1 and θ structures) is considered in some detail.

We also try to address the effects of the mean velocity and scalar gradients
on the small-scale scalar field and those of vorticity on small-scale mixing, since
unlike homogeneous isotropic turbulence, magnitudes of the mean velocity and scalar
gradients are large near the wall.

This paper is organized as follows: The numerical methodology is described in
§ 2. In § 3, mean square values of the vorticity components and scalar derivatives are
compared, and the degree of isotropy of ωi and θ,i is also addressed. In § 4, transport
equations of ωiωi and θ,i θ,i are examined to clarify the relationship between them
especially with regard to the processes involved in the production and destruction of
these quantities. The alignment between ωi and θ,i is also investigated. The correlation
coefficients between the vorticity and scalar derivative vectors are discussed in § 5 in
the context of the organized motions. Section 6 examines the topology of the scalar
dissipation rate (note that the square of the instantaneous scalar gradient, θ,i θ,i ,
differs from the instantaneous scalar dissipation rate, κ(θ,i θ,i ), only by the constant
factor κ) and its relationship with that of the enstrophy, the energy dissipation rate
and the vortical structures. In § § 3–6, the discussion covers both the inner (including
viscous, buffer and also near-wall) and outer regions of the flow, and differences
between these two flow regions in terms of the statistics and topologies associated
with ωi and θ,i are highlighted. We should note that the separation between the inner
and outer regions is small at Reτ =180 and 395 but moderate at Reτ = 640. A few
checks of the computational accuracy are given in the Appendix.

2. Numerical methodology
The governing equations for the velocity and scalar fields are the incompressible

three-dimensional continuity, Navier–Stokes and energy equations. A fully developed
turbulent channel flow is driven by a constant streamwise mean pressure gradient.
A passive scalar (temperature) is introduced by applying a constant time-averaged
heat flux at each wall. All the variables computed from the Navier–Stokes and
energy equations are normalized by the friction velocity uτ , the friction temperature
Tτ ( = Qw/ρcpuτ ) and the channel half-width δ, where Qw is the averaged wall heat
flux, ρ the density and cp the specific heat at constant pressure. The statistical data
are averaged in both space (x and z directions) and time (t).

For the energy equation, an instantaneous temperature difference Θ defined by

T =
∂〈Tw〉
∂x

x − Θ, (2.1)

(where T and Tw are the local temperature and wall temperature, respectively, and
the angular brackets represent integration over z and t) is used since 〈T 〉, 〈Tw〉, 〈Tm〉
increase linearly in the x direction for the present configuration (with 〈Tm〉 denoting
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the bulk mean temperature). The introduction of Θ enables the assumption that the
temperature fluctuation is zero at the wall, viz. the no slip boundary condition applies
in the y direction. For the other (x and z) directions, periodic boundary conditions
are imposed. The first term on the right-hand side of (2.1) can be written as

∂ 〈T +
m 〉

∂x#
=

∂ 〈T +
w 〉

∂x#
=

2∫ 2

0
Ū 1dy#

(2.2)

(see also Kasagi et al. 1992; Kawamura et al. 1998), where the superscripts + and
# denote normalizations by wall variables (ν/uτ and uτ ) and the channel half-width
(δ), respectively. Using (2.1) and (2.2), the energy equation can be expressed as

∂Θ+

∂t#
+ U+

j

∂Θ+

∂x
#
j

=
1

Reτ ·Pr

∂2Θ+

∂x
#2
j

+ U+
1

2∫ 2

0
Ū 1dy#

, (2.3)

where Ui is the instantaneous velocity in the ith direction. Note that the two walls
are kept cold and act to cool down the hot fluid (Kasagi et al. 1992; Kawamura et al.
1998; Kawamura, Abe & Matsuo 1999), which contrasts with the more common
experimental situation in which the wall is heated (e.g. Krishnamoorthy & Antonia
1987).

A fractional step method is adopted with a semi-implicit time-advancement scheme.
For the viscous terms with wall-normal derivatives, the Crank–Nicolson method is
used. For the other terms, the low-storage third-order Runge–Kutta method (Spalart,
Moser & Rogers 1991) is employed. For the spatial discretization, the finite-difference
method is used. The fourth-order central scheme (Morinishi et al. 1998) is applied in
the x and z directions, whereas the second-order one is applied in the y direction.
Further details of the numerical methodology can be found in Abe, Kawamura &
Matsuo (2001, 2004b) and Antonia, Abe & Kawamura (2008).

For the spatial discretization, most of the existing DNS studies of the scalar
dissipation rate employ the spectral method (e.g. Antonia & Kim 1994b), while
the present study uses the finite-difference method (Abe et al. 2001, 2004b; Abe,
Kawamura & Choi 2004a). The latter method is generally inferior to the spectral
method in terms of the numerical accuracy when one adopts the same number of grid
(or mode) points (e.g. Kravchenko & Moin 1997). To overcome this difficulty, the
present numerical scheme has higher order accuracy in the x and z directions, and a
large number of grid points are used in all three directions to resolve the Kolmogorov
and Batchelor length scales (viz. η(≡ (ν3/ε)1/4) and ηB(≡ ηPr−1/2), where ε is the mean
energy dissipation rate defined by ε ≡ ν(ui,j (ui,j + uj,i))) as accurately as possible. We
should mention that for the finite-difference method, the high wavenumber part of
the spectrum does not suffer from the energy pileup that has been observed with the
pseudo-spectral approach (see, for example, Antonia & Orlandi 2004).

The computational domain size (Lx × Ly × Lz), number of grid points
(Nx × Ny × Nz), spatial resolution (x, y, z) and the sampling duration (tsam)
are given in table 1, where the superscript * denotes normalization by Kolmogorov
scales (η and vK ) and the subscript c represents the centreline value (vK (≡ (νε)1/4)
denotes the Kolmogorov velocity scale). The spatial resolution at the centreline is
smaller than about 0.8η in the x and z directions and about 1.6η in the y direction for
all the cases examined. Since Pr is smaller than 1, the Batchelor scale ηB is slightly
larger than the Kolmogorov scale. Also, included in table 1 is the Taylor microscale
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Reτ 180 395 640

Lx × Ly × Lz 12.8δ × 2δ × 6.4δ 12.8δ × 2δ × 6.4δ 12.8δ × 2δ × 6.4δ
L+

x × L+
y × L+

z 2304 × 360 × 1152 5056 × 790 × 2528 8192 × 1280 × 4096
Nx × Ny × Nz 768 × 128 × 384 1536 × 192 × 768 2048 × 256 × 1024

x+, y+, z+ 3.00, 0.20 ∼ 5.93, 3.00 3.29, 0.15 ∼ 6.52, 3.29 4.00, 0.15 ∼ 8.02, 4.00
x∗

c , y∗
c , z∗

c 0.82, 1.63, 0.82 0.74, 1.47, 0.74 0.82, 1.64, 0.82
Reλ1 C, Reλ2 C, Reλ3 C 34, 18, 23 51, 30, 35 66, 40, 46

t+
sam 3960 5008 6385

Table 1. Domain size, grid points, spatial resolution, sampling duration and Taylor
microscale Reynolds numbers.
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Figure 1. Mean square values of the vorticity components and temperature derivatives
normalized by wall units: (a) ω+

α ω+
α ; (b) θ,+α θ,+α . For ω+

α ω+
α , the Reynolds numbers of Moser

et al. (1999) are Reτ = 180, 395 and 590. For θ,+α θ,+α , Reτ =180 for Antonia & Kim (1994b)
and 150 for Kasagi et al. (1992); the studies employed different thermal boundary conditions,
viz. a constant internal heat source and a constant wall heat-heat flux, respectively. In this and
subsequent figures the Prandtl number, Pr, is equal to 0.71.

Reynolds number at the centreline defined by

Reλi C =
u′λi

ν
, (2.4)

where λ+
i ≡ (u+2

1 /u+2
1,i )

1/2 is the Taylor microscale; the prime denotes a root mean square
(r.m.s.) value; and the subscript C refers to the centreline. The present magnitudes of
Reλi C are smaller than for DNS box turbulence data with a passive scalar (Vedula
et al. 2001; Watanabe & Gotoh 2004, 2007; Yeung, Donzis & Sreenivasan 2005). A
few validation checks of the computational accuracy are given in the Appendix.

3. Distributions of ωαωα and θ,α θ,α – comparison with isotropy
In this section, we consider the magnitudes of ωαωα and θ,α θ,α and how the mean

velocity and temperature gradients affect their departure from isotropy.
Figure 1 shows the components of ωαωα and θ,α θ,α normalized by wall variables.

The DNS data of Moser, Kim & Mansour (1999) at Reτ = 180, 395 and 590 for
ωαωα and those of Antonia & Kim (1994b; Reτ = 180 and Pr =0.71) and Kasagi
et al. (1992; Reτ = 150 and Pr =0.71) for θ,α θ,α are included in figures 1(a) and 1(b),
respectively. The agreement between the present distributions and those of Kasagi
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et al. (1992) and Moser et al. (1999) is satisfactory. The relatively poor agreement
with Antonia & Kim (1994b) may be due to the different thermal boundary condition

used by them. We note that ω+
3 ω+

3 and ω+
2 ω+

2 exhibit nearly the same behaviour as

θ,+2 θ,+2 and θ,+3 θ,+3 , respectively, whereas ω+
1 ω+

1 behaves in a manner different to

that of θ,+1 θ,+1 . This latter difference may reflect the difference between the solenoidal
nature of the vorticity vector (∇·ωi ≡ 0) and the lamellar nature of the scalar derivative
vector (∇ × θ,i ≡ 0), as first indicated by Corrsin (1953) when comparing the transport
equations of θ,i θ,i and ωiωi . In this context, there is evidence to suggest that the

near-wall distributions of θ,21, θ,22, θ,23 are quite similar to those of u2
1,1, u2

1,2, u2
1,3

even when Pr= 0.71 (Antonia, Kim & Browne 1991). Since ω2 ≈ u1,3 and ω3 ≈ − u1,2

near the wall, the similarity between ω+
2 ω+

2 and θ,+3 θ,+3 and between ω+
3 ω+

3 and θ,+2 θ,+2
arises from the strong correlation between u1 and θ (Kim & Moin 1989; Antonia &

Kim 1991). The dissimilarity between ω+
1 ω+

1 and θ,+1 θ,+1 is most likely related to the
different natures of the motions which contribute to ω1 and θ,1 (quasi-streamwise
vortices versus internal shear/thermal layers).

In the near-wall region, the largest contributions to the enstrophy (ω+
i ω+

i ) and scalar

dissipation rate (κ(θ,+i θ,+i )) are from ω+
3 ω+

3 and θ,+2 θ,+2 , respectively. The magnitudes

of ω+
1 ω+

1 and ω+
3 ω+

3 increase noticeably with increasing Reynolds number, while that of

ω+
2 ω+

2 does not change appreciably with the Reynolds number (figure 1a). The rate

of increase for ω+
1 ω+

1 and ω+
3 ω+

3 is significant between Reτ = 180 and Reτ = 395 but

only moderate between Reτ =395 and Reτ = 640. The magnitude of θ,+2 θ,+2 increases

significantly as Reτ increases, whereas the magnitudes of θ,+1 θ,+1 and θ,+3 θ,+3 remain
unchanged (figure 1b). The near-wall dependence on Reτ of the scalar dissipation rate

thus comes substantially from θ,+2 θ,+2 . The significant increase in ω+
1 ω+

1 , ω+
3 ω+

3 and

θ,+2 θ,+2 occurs for y+ < 3 and is essentially caused by the straining induced by the

wall (note that ω+
1 ω+

1 ≈ u+
3,2u

+
3,2 and ω+

3 ω+
3 ≈ u+

1,2u
+
1,2 in the vicinity of the wall). On

the other hand, the approximate independence on Reτ of ω+
2 ω+

2 and θ,+3 θ,+3 seems
consistent with the independence on Reτ of the spanwise streak spacing (Smith &
Metzler 1983), after normalization by wall variables. The approximate independence

on Reτ of θ,+1 θ,+1 may be associated with approximate independence of the streamwise
separation normalized by wall variables between internal shear and thermal layers
(Kim 1988; Kim & Moin 1989).

In figure 1, the magnitudes, for each value of α, of either ωαωα or θ,α θ,α are nearly
equal in the outer layer, which may indicate that the vorticity and scalar dissipation
fields approach isotropy as the channel centreline is approached. To examine how
they approach isotropy, the mean square values of ωαωα and θ,α θ,α for Reτ = 180,
395 and 640 at Pr= 0.71 are normalized by Kolmogorov and Batchelor scales (vK ,
θB , η) and are shown in figure 2 (θB(≡ (εθν

1/2ε−1/2)1/2) is the Batchelor temperature
scale). Note that ω∗

αω
∗
α denotes normalization by (vK/η)2 or equivalently (1/tK )2

(≡ ε/ν, where tK is the Kolmogorov time scale), whilst θ,∗
α θ,∗

α denotes normalization
by (θB/η)2 or equivalently (θ,i θ,i/Pr) (≡ εθ/ν). For local isotropy, ω∗

αω
∗
α and θ,∗

α θ,∗
α

should be equal to 1/3 and Pr/3, respectively. In figure 2, the departure from
isotropy is significant especially in the viscous and buffer regions for both ω∗

αω
∗
α and

θ,∗
α θ,∗

α . Away from the wall, ω∗
αω

∗
α and θ,∗

α θ,∗
α approach local axisymmetry (Batchelor

1946; Chandrasekhar 1950; George & Hussein 1991) rather than local isotropy for
y+ > 60 and y+ > 100, respectively. Two components (ω∗

2ω
∗
2 � ω∗

3ω
∗
3, θ,∗

1 θ,∗
1 � θ,∗

3 θ,∗
3)

are nearly equal, and their magnitudes are close to isotropy, while the remaining
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Figure 2. Mean square values of the vorticity components and temperature derivatives for
Reτ = 180, 395 and 640 normalized by Kolmogorov and Batchelor scales (vK , θB , η): (a) ω∗

αω∗
α;

(b) θ,∗
α θ,∗

α; , Reτ = 640; - - - - - - -, Reτ = 395; · · · · · · · · ·, Reτ = 180.

component (ω∗
1ω

∗
1, θ,∗

2 θ,∗
2) is larger than the other two, thus exhibiting the largest

departure from isotropy. The anisotropy is more enhanced for θ,∗
α θ,∗

α than ω∗
αω

∗
α ,

consistent with the general expectation that the scalar dissipation rate is more
anisotropic than the vorticity (e.g. Sreenivasan 1991; Antonia & Kim 1994b). In
the region y+ > 100 and y/δ < 0.7, where the departure from isotropy remains
constant for Reτ = 395 and 640, the ratios θ,2 θ,2/θ,1 θ,1 and θ,2 θ,2/θ,3 θ,3 are equal
to about 1.3 ∼ 1.6 and 1.2 ∼ 1.3, respectively. In contrast to isotropic turbulence with a
superimposed mean temperature gradient (e.g. the review of Antonia & Orlandi 2003),
little information is available for turbulent shear flows. For example, Sreenivasan et al.
(1977) showed that the ratios θ,2 θ,2/θ,1 θ,1 and θ,2 θ,2/θ,3 θ,3 are about 1.4 and 0.7,
respectively, in a turbulent boundary layer. Tavoularis & Corrsin (1981) reported a
value of 1.82 for the ratio of θ,α θ,α between directions parallel and perpendicular
to the imposed mean scalar gradient in a nearly homogeneous turbulent shear flow.
For a turbulent boundary layer, Krishnamoorthy & Antonia (1987) found almost the
same trend as Sreenivasan et al. (1977), e.g. θ,2 θ,2/θ,1 θ,1 = 1.4, θ,2 θ,2/θ,3 θ,3 = 0.9,
at y/δ =0.25 (here δ denotes the boundary layer thickness). The present data at
Reτ = 640 indicate that θ,2 θ,2/θ,1 θ,1 = 1.4 and θ,2 θ,2/θ,3 θ,3 = 1.2. Speculatively, the
poor agreement for θ,2 θ,2/θ,3 θ,3 may reflect a difference in outer layer properties
between the channel and the boundary layer. From the above considerations, one
may infer that the levels of anisotropy in ωαωα and θ,α θ,α may be associated with
the mean velocity and temperature gradients.

It seems natural to inquire whether ω∗
αω

∗
α and θ,∗

α θ,∗
α approach isotropy at the

centre of the channel due to the disappearance of the mean velocity and temperature
gradients there. In this context, Antonia & Mi (1993) found that on the axis of a
round jet, the three components of the temperature dissipation rate are approximately
equal. They also indicated that this behaviour differs from that in a plane jet (Antonia
& Browne 1983) or a wake (Browne, Antonia & Shah 1987). The behaviour in the two
latter flows seems to correspond more closely to that of the present data. The previous
observations imply that the departure from isotropy of mean square derivative values
may be flow dependent. In a turbulent channel flow, the transport of turbulent energy
and scalar variance across the centreline by the large-scale motion is likely to cause
departures from local isotropy.
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In figure 2, the sum of the mean square vorticity components, ω∗
i ω

∗
i , should be

equal to 1 provided local homogeneity is satisfied, viz. ε = νωiωi . However, local
homogeneity is not strictly satisfied for ω∗

i ω
∗
i near the wall (figure 2a). Such a

departure from homogeneity was reported for the energy dissipation rate by Antonia
et al. (1991). Since the general relation between the energy dissipation rate and
enstrophy is given by ε = ν(ωiωi + 2ui,jui,j ), the departure from homogeneity is due
to the term ν(2ui,juj,i) which is closely associated with vortical motions, such as the
near-wall streamwise vortices (e.g. Robinson 1991).

4. Transport equations of ωiωi and θ,i θ,i

Corrsin (1953) first drew attention to the analogous form of the transport
equations for the mean enstrophy, ωiωi , and the mean square scalar gradient,
θ,i θ,i , notwithstanding the different natures of these two quantities. This suggests
a close association between vorticity and scalar dissipation rate fields. With the
use of DNS databases, the topic has been pursued with vigour for homogeneous
isotropic turbulence (e.g. Ashurst et al. 1987; Ruetsch & Maxey 1991, 1992; Pumir
1994) and homogeneous sheared turbulence (e.g. Nomura & Elghobashi 1992). In
wall turbulence, however, the relationship between the two transport equations is
still unclear, especially near the wall, where the mean strain rate is large, and the
quasi-streamwise vortices play an important role in sustaining turbulence. Such an
investigation should help in terms of constructing more reliable models for εθ in
near-wall flows.

For the present configuration, the transport equation of ωiωi normalized by wall
units may be written

0 = −2ω+
i u+

j

∂Ω̄+
i

∂x+
j︸ ︷︷ ︸

1

+ω+
i

(
∂u+

j

∂x+
i

+
∂u+

i

∂x+
j

)
Ω̄+

j︸ ︷︷ ︸
2

+ω+
i ω+

j

(
∂Ū+

i

∂x+
j

+
∂Ū+

j

∂x+
i

)
︸ ︷︷ ︸

3

+ ω+
i ω+

j

(
∂u+

i

∂x+
j

+
∂u+

j

∂x+
i

)
︸ ︷︷ ︸

4

− ∂

∂x+
j

(
ω+

i ω+
i u+

j

)
︸ ︷︷ ︸

5

+
∂2

∂x+
j ∂x+

j

(
ω+

i ω+
i

)
︸ ︷︷ ︸

6

− 2

(
∂ω+

i

∂x+
j

)(
∂ω+

i

∂x+
j

)
︸ ︷︷ ︸

7

, (4.1)

where Ωi is the instantaneous vorticity in the ith direction. Also, the transport
equation of θ,i θ,i normalized by wall units is given by

0 = −2θ,+i u+
j

∂Θ̄,+i
∂x+

j

+ 2

(
∂〈T̄m〉+

∂x+
1

)(
∂u+

1

∂x+
i

)(
∂θ+

∂x+
i

)
︸ ︷︷ ︸

1

−2θ,+i
∂u+

j

∂x+
i

∂Θ̄+

∂x+
j︸ ︷︷ ︸

2

−2θ,+i θ,+j
∂Ū+

j

∂x+
i︸ ︷︷ ︸

3

−2θ,+i θ,+j
∂u+

j

∂x+
i︸ ︷︷ ︸

4

− ∂

∂x+
j

(
θ,+i θ,+i u+

j

)
︸ ︷︷ ︸

5

+
1

Pr

∂2

∂x+
j ∂x+

j

(
θ,+i θ,+i

)
︸ ︷︷ ︸

6

− 2

Pr

(
∂θ,+i
∂x+

j

)(
∂θ,+i
∂x+

j

)
︸ ︷︷ ︸

7

.

(4.2)
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Figure 3. Budgets of ωiωi and θ,i θ,i normalized by wall units: (a) ω+
i ω+

i ; (b) θ,+i θ,+i . For

ω+
i ω+

i , – · – · – · , Antonia & Kim (1994a) at Reτ =180; −− · · −− · · −−, Antonia & Kim (1994a)

at Reτ = 395. For θ,+i θ,+i , – · – · – · Kasagi et al. (1992) at Reτ =150.

Note that in (4.1) and (4.2), the terms 1, 2, 3, 4 denote the gradient production, mean
gradient production (1), mean gradient production (2) and turbulent production,
respectively, whereas the terms 5, 6, 7 represent the turbulent diffusion, molecular
diffusion and dissipation, respectively. The budgets of ωiωi and θ,i θ,i , normalized
by wall variables, are shown in figure 3, where a comparison with previous DNS
data (Kasagi et al. 1992; Antonia & Kim 1994a) is made. For a turbulent channel
flow, in contrast to isotropic turbulence (e.g. Ruetsch & Maxey 1992; Vedula et al.
2001), the mean gradient terms cannot be neglected but are of the same order of
magnitude as the turbulent production term near the wall. As noted by Corrsin (1953),
the similarity between the transport equations of ωiωi and θ,i θ,i seems convincing,
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although differences can be discerned between the mean gradient production and
turbulent production terms. The differences near the wall are due to the different
boundary conditions. For the transport equations of both ωiωi and θ,i θ,i , Reynolds-
number effects do not appear in the gradient production term but in the other three
production terms, consistent with those for the transport equation of ε (Rodi &
Mansour 1993). The rate of increase from Reτ = 180 to Reτ = 395 is larger than
that from Reτ = 395 to Reτ = 640. Tennekes & Lumley (1972) provided order of
magnitude estimates for each term in the transport equations of ωiωi . They suggested
that the ratio of the mean gradient production to the difference between the turbulent
production and the dissipation terms is of the order 1/Re1/2. However, as can be
seen in the budget of ε obtained by Rodi & Mansour (1993), such Reynolds-number
effects do not appear in the budgets of ωiωi and θ,i θ,i away from the wall (not shown
here), which may be useful for the development of turbulence models especially in
the context of the transport equation for εθ (e.g. Nagano & Kim 1988; Yoshizawa
1988; Johansson & Wikström 1999).

For each budget, a better understanding of the turbulent production terms is
necessary in order to gain further insight into the production process in view of
the leading-order magnitude of these terms across the channel (figure 3). The terms,
which can be rewritten as 2ωiωj sij (4.1) and −2θ,i θ,j sij (4.2), have the fluctuating
strain rate tensor sij (≡ (1/2)(ui,j + uj,i)) in common. The magnitudes of 2ωiωj sij and

−2θ,i θ,j sij depend on the relative magnitudes and orientations of ωi and θ,i and
also sij ; e.g. the extensional (positive) and compressive (negative) strain rates lead to

increases in 2ωiωj sij and −2θ,i θ,j sij , respectively. Significant attention has been given
to the alignments of ωi and θ,i with respect to the directions of the principal rates
of strain in homogeneous isotropic turbulence (e.g. Ashurst et al. 1987; Ruetsch &
Maxey 1992; Pumir 1994) and homogeneous sheared turbulence (e.g. Nomura &
Elghobashi 1992). We investigate this issue further for the present flow. In particular,
the emphasis is on the near-wall region. Probability density functions (p.d.f.s) for the
cosine of the angle between the vorticity and the principal strain rate directions and
also between the scalar gradient and the principal strain rate directions are given in
figure 4, where ai, bi, ci denote the eigenvectors corresponding to the directions of the
eigenvalues a, b, c, respectively. Since sij is the symmetric tensor, a, b, c are real with
a + b + c =0 (solenoidal condition) and a � b � c (a � 0 � c). Note that subsequent
results for the principal strain rates are obtained using one instantaneous realization
as in Blackburn, Mansour & Cantwell (1996). Near the wall, ωi is aligned with the
intermediate (b) strain rate, consistent with the finding of Blackburn et al. (1996),
who noted the correspondence between the b strain rate and mean spanwise vorticity
(viz. mean strain rate tensor) directions (for a possible kinematical explanation, see
Jiménez 1992). On the other hand, the orientation of θ,i is at about 45◦ to the
most compressive (c) and extensional (a) strain rate directions (cosθ =0.71). As in
the case of ωi, θ,i is aligned with the direction of the mean strain rate tensor. The
preferred orientation of θ,i to the mean strain rate was also reported by Nomura &
Elghobashi (1992) for homogeneous sheared turbulence. The present observations
with regard to the alignment may readily be expected, since ω3ω3 and θ,2 θ,2 are
the most dominant components near the wall (figure 1). At the channel centreline,
ωi and θ,i tend to align with the intermediate (b) and compressive (c) strain rates,
respectively. The distributions are almost the same as for isotropic turbulence (e.g.
Ashurst et al. 1987; She, Jackson & Orszag 1990; Ruetsch & Maxey 1992; Pumir
1994; Vincent & Meneguzzi 1994; Vedula et al. 2001; Brethouwer et al. 2003; see also
Sreenivasan & Antonia 1997).
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Figure 4. P.d.f.s of the cosine of the angle between the vorticity and the principal strain rate
directions ((a) and (b)) and between the scalar gradient and the principal strain rate directions
((c) and (d)): (a), (c) y+ = 10; (b), (d) y/δ = 1; , Reτ = 640; - - - - - - -, Reτ = 395;
· · · · · · · · ·, Reτ = 180; �, Ashurst et al. (1987) at Rλ =87 (isotropic turbulence); �, Horiuti
(2001) at Rλ = 87.6 (isotropic turbulence); �, Blackburn et al. (1996) for Reτ = 395 at y/δ = 1
(turbulent channel flow); �, Vedula et al. (2001) at Rλ = 243 (isotropic turbulence with a
mean temperature gradient). Note that Rλ denotes the Reynolds number based on the Taylor
microscale and the r.m.s. of u.

The preferred orientation of ωi and θ,i is reflected in the mean square values
projected along each of the principal strain eigenvectors (the distributions are not
shown here). As inferred from figure 4, the largest contributions to the mean square
values of ωi and θ,i are along the b and c strain rate directions, respectively, across
the major portion of the channel. As the wall is approached, their magnitudes change
gradually due to the variation of the mean strain rate. Near the wall, the contribution
to ωiωi is almost along the b strain rate direction, whilst that to θ,i θ,i is at about
45◦ to the a and c strain rate directions, suggesting a preference to align with the
mean strain rate tensor. The same is true for structures of ωiωi and θ,i θ,i , although
the instantaneous fields are not shown here (see also § 6). In the near-wall region,
ωiωi is mostly aligned with the b strain rate direction, whereas the orientation of
θ,i θ,i lies, to a large degree, at about 45◦ to the a and c strain rate directions. The
quantities ωiωi and θ,i θ,i are space filling (with momentum and thermal streaks (ω3

and θ,2 ) and quasi-streamwise vortices (ω1) being the most dominant contributors)
so that (ωibi)

2/ω2
i ≈ 1 and (θ,i ai)

2/θ,2i � (θ,i ci)
2/θ,2i ≈ 0.5 hold over most of the wall

region. In the outer region, they occur only sparsely. As for homogeneous isotropic
turbulence, the intense regions of ωiωi and θ,i θ,i (e.g. annular regions of tubelike
vortices (ωiωi) and sheetlike structures (θ,i θ,i )) are aligned with the b and c strain
rate directions, respectively.
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Figure 5. Turbulent production terms of ωiωi and θ,i θ,i projected along each of
the principal strain eigenvectors as functions of y+: (a) ωαωαα/ωiωj sij (α ≡ a, b, c);

(b) θ,α θ,α α/θ,i θ,j sij (α ≡ a, b, c).

Unlike the mean square values, the turbulent production terms projected along the
principal strain rate directions are not simply inferred from figure 4. The terms are
normalized as follows:

ωαωαα/ωiωj sij or θ,α θ,α α/θ,i θ,j sij (α ≡ a, b, c) , (4.3)

where (ωaωaa + ωbωbb + ωcωcc)/ωiωj sij ≡ 1 and θ,a θ,a a + θ,b θ,b b + θ,c θ,c c)/

θ,i θ,j sij ≡ 1. Their distributions are shown in figure 5. Near the wall, 2ωiωj sij consists

mostly of the component along the b strain rate direction, whilst −2θ,i θ,j sij contains
mainly components along the a and c strain rate directions. This implies that the
turbulent production terms also prefer to align with the mean strain rate. We should
note that unlike 2ωiωj sij , the mean strain rate is not necessarily associated with the

increase in −2θ,i θ,j sij , since the latter is only amplified by the c strain rate. In the
outer region, on the other hand, the relative contributions are almost the same as
for isotropic turbulence (Vincent & Meneguzzi 1994 for 2ωiωj sij ; Vedula et al. 2001

for −2θ,i θ,j sij ). In particular, the magnitudes of θ,α θ,α α/θ,i θ,j sij (α ≡ a, b, c)
are nearly identical with those of Vedula et al. (2001). Figure 5 also shows larger
magnitudes near the wall than in the outer region especially for θ,c θ,c c/θ,i θ,j sij ,
suggesting that near the wall θ,i is more likely to be correlated with the c strain rate
than in isotropic turbulence. For isotropic turbulence, the strain rate and vorticity
exhibit strong spatial and temporal intermittency (e.g. the Lagrangian study of Yeung
2001). These quantities thus become decorrelated in time quite rapidly. In particular,
Yeung (2001) reported that the scalar dissipation rate becomes decorrelated more
rapidly than the energy dissipation rate so that θ,i may not have enough time to
align itself with the direction of the most compressive strain. This in turn can lead
to weak correlations between the strain rate and −2θ,i θ,j sij . The scenario differs
in the near-wall region due to the persistent space-filling nature of the near-wall
organization (e.g. Johansson, Alfredsson & Kim 1991) as well as the presence of the
mean velocity and temperature gradients, leading to a stronger likelihood for θ,i to
be correlated with the c strain rate.

The effect of vorticity on the transport equation of θ,i θ,i (4.2) can be assessed
in the same manner for isotropic turbulence (e.g. Gonzalez 2002; Brethouwer et al.
2003). For the present flow, the effect appears in the mean gradient production terms
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(1) and (2) (see (4.2)):

−2θ,+i
∂u+

j

∂x+
i

∂Θ̄+

∂x+
j

= −2θ,+i s+
i2

∂Θ̄+

∂x+
2

+ (−θ,+1 ω+
3 + θ,+3 ω+

1 )
∂Θ̄+

∂x+
2

, (4.4)

− 2θ,+i θ,+j
∂Ū+

j

∂x+
i

= −2θ,+2 θ,+1 (S
+

12 + W
+

12), (4.5)

where Sij (≡ (1/2)(Ui,j + Uj,i)), Wij (≡ (1/2)(Ui,j − Uj,i)) are the instantaneous strain
rate and rate of rotation tensors, respectively. As indicated in figure 3(b), the
magnitudes of (4.4) and (4.5) are significant near the wall. Figure 6 illustrates that
in (4.4), the term containing the strain rate is important in the viscous sublayer,
whereas that with ω1 is important in the buffer region. The former is attributed
to the significant increase in θ,2 θ,2 (see figure 1b), whilst the latter amplifies the
magnitude of θ,3 θ,3 and implies that the quasi-streamwise vortices are essential for
enhancing the small-scale scalar mixing. In (4.4), the term containing ω3 is negative.
Since ω3 � −2s12 = −2s21, it is difficult to distinguish between the effects of the strain
rate and those of the vorticity. The same difficulty is encountered with (4.5), since
S̄12 = W̄12 in this flow. The present results underline that, unlike isotropic turbulence
in which the magnitudes of the mean gradient production terms are negligible (e.g.
Ruetsch & Maxey 1992; Vedula et al. 2001; Brethouwer et al. 2003), the effect of
vorticity cannot be neglected near the wall. In the outer region, however, (4.4) can be
neglected due to the small magnitude of the mean temperature gradient so that ωiωi

and θ,i θ,i are produced by the same type of straining motion, i.e. 2ωiωj sij (4.1) and

−2θ,i θ,j sij (4.2), as for isotropic turbulence.

5. Correlation coefficients between ωi and θ,i

The similarity between ωiωi and θ,i θ,i (§ 3) and between the transport equations
for these two quantities (§ 4) suggests a strong correlation between ωi and θ,i . In
this section, we attempt to quantify this via correlation coefficients. The relation
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Figure 7. Correlation coefficients between vorticity components and temperature derivatives:
(a) ω1θ,i/ω

′
1θ,′

i; (b) ω2θ,i/ω
′
2θ,′

i; (c) ω3θ,i/ω
′
3θ,′

i . In (a), ω1ω2/ω
′
1ω

′
2 obtained from the

present study is included for comparison. In (c), θ,1 θ,2/θ,′
1 θ,′

2 and u1θ/u′
1θ

′ obtained from

the present study are included together with u1θ/u′
1θ

′ by Kasagi et al. (1992) for Reτ = 150.

between the correlations and the organized structures is also assessed by examining
the instantaneous fields.

Figure 7 shows the correlation coefficients of ωiθ,j together with those of

u1θ . Also included are the non-zero correlation coefficients of the vorticity and
scalar gradient vectors, i.e. ω1ω2 and θ,1 θ,2. Of the nine correlations, only four
(ω1θ,3, ω2θ,3, ω3θ,1, ω3θ,2) are non-zero, whereas the other five are almost zero
due to symmetry with respect to the x3 direction. (At the centreline, the magnitudes
of ω1θ,3 and ω3θ,1 are also almost zero due to symmetry with respect to both x2

and x3.) The magnitudes of the non-zero correlation coefficients, plotted against y+,
are quite large in the near-wall region. In particular, ω3θ,2/ω

′
3θ,′

2 is almost identical
with −u1θ/u′

1θ
′ very close to the wall, and the distribution of ω2θ,3/ω

′
2θ,′

3 follows
that of u1θ/u′

1θ
′ closely. Away from the wall, the magnitudes of the four non-zero

correlation coefficients tend to decrease with increasing distance from the wall, and
their magnitudes are close to each other. These results indicate that ωi and θ,i
are interlinked throughout the channel, although the level of correlation varies in
the x2 direction. Further, the dot product between the two vectors, i.e. the sum of
ω1θ,1, ω2θ,2 and ω3θ,3, is negligible everywhere in the channel (which is not shown
here). This behaviour is similar to what has been observed in isotropic turbulence
(Pumir 1994; Brethouwer et al. 2003). Whilst the orientations of ωi and θ,i vary with
increasing distance from the wall (§ 4), the vorticity vector is perpendicular to the
scalar gradient vector throughout the channel. However, this does not imply that the
effect of the vorticity on small-scale mixing is negligible for the present flow. In fact,
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Figure 8. Instantaneous isocontours in the y–z plane of vorticity and temperature derivative
components for Reτ = 180. The normalization is by wall units: (a) ω+

1 ; (b) θ,+1 ; (c) ω+
2 ;

(d) θ,+2 ; (e) ω+
3 ; (f ) θ,+3 . Colour isocontours are used for ωi and θ,i , while lines are used

for u+
1 ((a), (c), (e)) and θ+ ((b), (d), (f )). (Solid and dashed lines refer to positive and negative

values; the line increment is 0.5.)

ω1θ,3 is important near the wall, as discussed in § 4 (see also (4.4)), but small in the
outer region due to the negligibly small magnitude of the mean temperature gradient.

The implication of figure 7 is discussed in the context of turbulence structures. In
the near-wall region, the large magnitude of ω3θ,2/ω

′
3θ,′

2 is consistent with the nearly
perfect similarity between the momentum and thermal streaks (figure 8). There is
also a strong correlation between ω2θ,3/ω

′
2θ,′

3 and the streaks, since concentrations
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Figure 9. Instantaneous isocontours in the x–y plane of vorticity and temperature derivative
components for Reτ = 180. The normalization is by wall units: (a) ω+
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3 , θ,+1 and θ,+2 . Lines are used for p+ in (a) and ω+

3 in (b) and
(c). (Solid and dashed lines refer to positive and negative values; the line increment is 0.5 in
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of ω2 and θ,3 occur at the interfaces between positive and negative u1 or θ streaks.
However, the streaks are not the only structures which contribute to ω1θ,3/ω

′
1θ,′

3 and
ω3θ,1/ω

′
3θ,′

1. The quasi-streamwise vortices (e.g. Robinson 1991) and internal shear
layers (e.g. Jiménez et al. 1988; Johansson et al. 1991) are also likely contributors. The
evidence appears in the instantaneous isocontours of ωi and θ,i shown in figures 8
and 9. In figure 8, a counterclockwise vortex (ω1 < 0) appears at y+ ≈ 20, which
is located at the interface between the positive and negative u1 or θ streaks (ω2 < 0
or θ,3 < 0). This is consistent with ω1θ,3/ω

′
1θ,′

3 > 0. The opposite is true for the
clockwise vortex (ω1 > 0), where ω2 > 0 or θ,3 > 0, and hence ω1θ,3/ω

′
1θ,′

3 > 0 (not
shown here). The ω1 isocontours change sign close to the wall (figure 8a) due to the
motion induced by the non-slip boundary condition at the wall (e.g. Kim, Moin &
Moser 1987; Robinson 1991). This results in a change in sign of ω1θ,3/ω

′
1θ,′

3 and
ω1ω2/ω

′
1ω

′
2 at y+ = 5 (figure 7a). For the momentum and thermal internal shear

layers (figure 9), similar features are exhibited as previously indicated by Kim (1988)
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Figure 10. Two-point correlations of ωi and θ,i in the z direction for Reτ = 180, 395 and 640:
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(z) ; (b) Rθ,iθ,i (z). In each case, the fixed point is at y+ = 10. In the insets, an
exaggerated vertical scale is used to highlight the local positive maximum near z+ = 100.

and Kim & Moin (1989). The positive u1 (or θ) structure impacts the negative u1

(or θ) structure in the buffer region, and the pressure fluctuation (p) is large and
positive there. Consequently, regions with ω3 < 0, θ,1 < 0 and θ,2 > 0 appear near the
wall, consistent with ω3θ,1/ω

′
3θ,′

1 > 0, ω3θ,2/ω
′
3θ,′

2 < 0 and θ,1 θ,2/θ,′
1 θ,′

2 < 0. These
results indicate that the large magnitudes of the correlation coefficients are closely
associated with the near-wall organization. They also imply that the presence of the
thermal streaks and internal shear layers are essential for mixing the scalar, whereas,
in the light of (4.4), the quasi-streamwise vortices are important for enhancing the
mixing as well as the strain rate.

One may expect that the near-wall behaviour of ωi and θ,i does not change
appreciably with increasing Reynolds number because the correlation coefficients
are plotted against y+. However, inspection of the instantaneous fields (not shown
here) revealed that, near the wall, ωi and θ,i change in the x and z directions with
increasing Reτ . This may be associated with the fact that the near-wall momentum
and thermal streaks become dense and clustered with increasing Reynolds numbers
(see, for example, Robinson 1991; Abe et al. 2001, 2004a, b; Jiménez, del Álamo &
Flores 2004; Tanahashi et al. 2004; Iwamoto, Kasagi & Suzuki 2005). To quantify
this, two-point correlation coefficients of ωi and θ,i defined as

Rωiωi
(xi) = ωi(xi) ωi(xi + xi) /ωi(xi)

′ ωi(xi + xi)
′, (5.1)

Rθ,iθ,i (xi) = θ,i (xi) θ,i (xi + xi) /θ,i (xi)
′ θ,i (xi + xi)

′, (5.2)

are examined at y+ = 10. Although only the spanwise two-point correlations are shown
in figure 10, correlations in both x and z directions (e.g. Rω2ω2

(x1), Rθ,3θ,3 (x1),
Rω3ω3

(x3) and Rθ,2θ,2 (x3)) vary with increasing Reτ . In particular, the negative
maximum of Rω3ω3

(x3) and Rθ,2θ,2 (x3) at z+ ≈ 50 becomes less pronounced; the
same is also true for Ruu(x3) and Rθθ (x3) (not shown here). This is consistent with
the present observation that, unlike those at Reτ = 180, the ω3 and θ,2 isocontours
at Reτ = 640 (not shown here) exhibit dense and clustered structures and large-
scale patterns in the z direction. At the wall, the same trend has been reported
by Österlund (1999) for Ruu(x3) in a turbulent boundary layer and Abe et al.
(2004b) for Rθθ (x3) in a turbulent channel flow. In these papers, this behaviour was
attributed to the effect of the large outer layer structures on the near-wall region.
Interestingly, unlike Rω3ω3

(x3) and Rθ,2θ,2 (x3), Rω2ω2
(x3) and Rθ,3θ,3 (x3) show

negative and positive peaks at z+ ≈ 30 and z+ ≈ 110, respectively (see figure 10
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and the insets). These peaks may be associated with the width of the streaks, since
concentrations of ω2 and θ,3 often appear at the spanwise interfaces between streaks
(figure 8c, f ). Robinson (1991), who examined the turbulent boundary layer DNS
database of Spalart (1988), suggested that the width of the low-speed streaks ranges
between 20 and 80 wall units, whereas that of the high-speed streaks is between 40 and
100 wall units. Since the low-speed streaks are dominant in the near-wall region, the
negative peak at z+ ≈ 30 may be related to the width of these streaks. The positive
peak at z+ ≈ 110 may be regarded as the width of both high- and low-speed streaks
which appear alternately in the z direction. Given that the magnitudes of the negative
maxima of Rω2ω2

(x3) and Rθ,3θ,3 (x3) are larger and less dependent on Reτ than
those of Ruu(x3) and Rθθ (x3) (not shown here), ω2 and θ,3 may provide more
accurate data for the spanwise dimension and separation between streaks than u1

and θ .
Away from the wall, the sign of ω3θ,1/ω

′
3θ,′

1 changes at y+ = 70 (figure 7c), which
may be related to the change in the principal orientation of ω3. For a turbulent channel
flow, Moin, Adrian & Kim (1987) indicated a clear transition from streamwise-
oriented wall events to inclined shear stress events in the vicinity of the buffer layer.
Blackburn et al. (1996) suggested that near the wall the most intense vorticity tends
to be organized into tubular-shaped structures with x–y alignments ranging between
0◦ and 45◦ to the wall, the alignment of 45◦ being consistent with the direction of the
mean strain rate (Moin & Kim 1985), whereas in the outer region it lies mainly along
the spanwise orientation. For a turbulent boundary layer, Robinson (1991) suggested
that shear layers are prominent below y+ = 80, whilst transverse vortices dominate
above y+ = 80.

In the outer layer, large-scale velocity and temperature structures appear frequently
(e.g. Brown & Thomas 1977; Chen & Blackwelder 1978). Antonia & Van Atta
(1979) suggested that the anisotropic temperature fronts cause the non-zero skewness
of the temperature derivatives in a turbulent boundary layer. Tanahashi et al.
(2004) suggested a close association between the large-scale u1 structures and ω1

in a turbulent channel flow. The present DNS data also throw some light on the
relationship between small-scale (ωi and θ,i ) and large-scale (u1 and θ) structures.
Figure 11 displays isocontours of ω3 and θ,2 in the x–y plane together with those of u1

and θ . The ω3 and θ,2 concentrations occur at the interfaces of the large-scale u1 and
θ structures, suggesting that the large-scale θ structures are substantially responsible
for the small-scale scalar mixing (see also § 6). However, the similarity between the
large-scale u1 and θ structures is not as good as that between the near-wall u1 and
θ streaks, since the inclination to the wall of the θ contours is steeper than that of
the u1 contours in the outer region (see also the two-point correlations in the x–y

plane by Kawamura et al. 2002; Antonia et al. 2008). These results seem to be in
accord with the fact that ωiθ,j /ω

′
iθ,′

j is smaller in the outer layer than in the near-wall
region (see figure 7). From these considerations and the persistence of the structures
(e.g. Johansson et al. 1991), one may surmise that ωi and θ,i are associated with the
organized motions throughout the channel.

In figure 11, in contrast to the ω3 contours, the θ,2 contours exhibit sheetlike
structures in the outer region. Evidence for such structures has been found in several
turbulent flows, e.g. homogeneous isotropic turbulence (e.g. Ruetsch & Maxey 1992;
Pumir 1994; Vedula et al. 2001; Brethouwer et al. 2003), homogeneous sheared
turbulence (e.g. Nomura & Elghobashi 1992) and turbulent shear flows (e.g. Prasad &
Sreenivasan 1990; Sreenivasan 1991; Buch & Dahm 1998; Su & Clemens 2003).
They are aligned with the most compressive strain rate (Ashurst et al. 1987) and
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Figure 11. Instantaneous isocontours in the x–y plane of the spanwise vorticity fluctuation
and the wall-normal temperature derivative for Reτ = 640. The normalization is by wall units:
(a) ω+

3 ; (b) θ,+2 . Isocontours are used for ω+
3 and θ,+2 , while lines are used for u+

1 and θ+.
(Dashed lines refer to negative values; the line increment is 0.2.)

are associated with ramp–cliff structures (e.g. Sreenivasan, Antonia & Britz 1979;
Antonia et al. 1986; Holzer & Siggia 1994). An estimate of their thickness λDxi

can
be inferred from the first zero-crossing location of the present two-point correlation
of θ,i with a separation in the xi direction, Rθ,iθ,i (λDxi

) = 0, and is given in figure 12.
Note that this approach only provides a rough estimate for the thickness of the θ,i
concentration in view of the three-dimensionality of the structures; in particular, the
thickness of the θ,1 concentration may be affected noticeably by the inclination of
the structures. Near the wall, λDxi

differs significantly between the two normalizations
used in figure 12, reflecting the influence of the near-wall organization. Away from
the wall, the three estimates of the thickness tend to collapse when Kolmogorov
scaling is used. The success of this scaling is consistent with the observation that the
thickness of the sheetlike structures also exhibits Kolmogorov scaling (Buch & Dahm
1998; Moisy et al. 2001; Brethouwer et al. 2003; Su & Clemens 2003). For y+ > 100,
the magnitudes are approximately constant, equal to about 6η or 7ηB (figure 12b).
Ruetsch & Maxey (1992) and Brethouwer et al. (2003) reported values of 4η and 4
ηB , respectively, in isotropic turbulence, whilst Su & Clemens (2003) reported a value
of 5.4ηB in a turbulent plane jet, the latter being closer to the present estimate. In
a turbulent plane jet, there is evidence to suggest that the thickness scales on outer
velocity and length scales (Buch & Dahm 1998; Su & Clemens 2003). This does not
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Figure 12. Distributions of the scalar dissipation thicknesses, λDx, λDy, λDz, estimated from
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Reτ =180, 395 and 640 as functions of y+: (a) normalization by wall units; (b) normalization
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seem to be the case for a turbulent channel flow, since unlike a turbulent jet, the
Kolmogorov scales vary significantly in the x2 direction.

6. Topology of the scalar dissipation rate
The topology of small-scale structures has been examined intensively in isotropic

turbulence. The most intense vorticity was found to reside in tubes, whereas moderate
magnitudes of vorticity were associated with sheets (e.g. She et al. 1990; Ruetsch &
Maxey 1991; Jiménez et al. 1993; Vincent & Meneguzzi 1994). On the other hand,
intense scalar dissipation rates were sheetlike in form, as discussed in § 5. Blackburn
et al. (1996) suggested that in the outer region of a turbulent channel flow, the fine
scale motion has many characteristics in common with various other turbulent flows.
In this section, we investigate the topology of the scalar dissipation rate by examining
its relationship with the enstrophy, energy dissipation rate and vortical structures,
using instantaneous visualizations and conventional statistics.

Instantaneous isocontours of ωiωi, ε, Q(≡ (ωiωi/4 − sij sij/2) = − ui,juj,i/2) and
θ,i θ,i are shown in the y–z plane in figures 13 and 14, where Q denotes the second
invariant of the velocity gradient tensor, and its positive value (with the vorticity
dominant) corresponds to vortices (e.g. Robinson 1991). In a turbulent channel flow,
organized structures such as streaks, internal shear layers and backs (or fronts)
of the large-scale structures are intrinsic elements of the topology for the scalar
dissipation rate. Close to the wall, there are strong concentrations of θ,i θ,i parallel
to the wall and elongated in the x1 direction. (They are not shown here, since
they are virtually coincident with the thermal streaks, a feature that has been well
documented in the literature.) Slightly away from the wall, these concentrations tend
to be annular in shape and seem to occur along the periphery of streaks (figure 13).
They are space filling (figures 13 and 14) and aligned at about 45◦ to the extensional
(a) and compressive (c) strain rate directions (not shown here; see § 3). The similarity
between ωiωi and θ,i θ,i is excellent due to the near-wall similarity between ωi and
θ,i (see § 5). The correlations among ωiωi, ε, Q, θ,i θ,i are also high, since ωiωi ≈ ε,
and the quasi-streamwise vortices (Q > 0) are associated with high-energy dissipation
rate sites (Robinson 1991). Further away from the wall, the internal shear layers
and backs (or fronts) contribute significantly to θ,i θ,i (figure 14). The strong θ,i θ,i
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Figure 13. Instantaneous isocontours in the y–z plane of the enstrophy, the energy dissipation
rate, the scalar dissipation rate and the second invariant of the velocity gradient tensor for
Reτ = 180. The normalization is by wall units: (a) ω+

i ω+
i ; (b) ε+; (c), (d) θ,+i θ,+i . Isocontours

are used for ω+
i ω+

i , ε+ and θ,+i θ,+i , while lines are used for Q+ ((a)–(c)) and θ+ (d). (Solid
and dashed lines refer to positive and negative values; the line increment is 0.5 for θ+ and
0.005 for Q+.)

regions are spatially intermittent (spotty) structures (figure 14) and aligned with the
most compressive (c) strain rate (not shown here). In particular, they tend to appear
at the edges of large-scale θ structures (figure 14d), which are sheetlike in form as
discussed in § 5 (see also figure 11). Blackburn et al. (1996) suggested a degree of
similarity at small scales between the structures in isotropic turbulence and those
in the outer region of a channel flow. This is also true for the scalar dissipation
rate. For example, the structures for isotropic turbulence (e.g. Kerr 1985; Ruetsch &
Maxey 1991, 1992; Vedula et al. 2001) are observed in figure 14 (see, for example,
y+ =500 and z+ = 700 in this figure). The intense ωiωi regions correspond to Q > 0
(figure 14a) and may be associated with the vortex tubes (e.g. She et al. 1990;
Vincent & Meneguzzi 1994). The intense ε and θ,i θ,i concentrations wrap around
the positive Q regions with an annular shape (figure 14b, c), but the overlap between ε

and θ,i θ,i is small. It should be pointed out that, in the present flow, the intense θ,i θ,i
is not necessarily associated with the vorticity, energy dissipation rate and vortices but
with the large-scale θ structures (see figures 11b and 14d). This is consistent with the
observation established in previous work (e.g. Sreenivasan et al. 1979, Antonia et al.
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Figure 14. Instantaneous isocontours in the y–z plane of the enstrophy, the energy dissipation
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1986; Sreenivasan 1990; Nomura & Elghobashi 1992) that the most intense scalar
dissipation rates are related to large-scale anisotropic structures of θ .

A quantitative measure of the correlation between ωiωi and θ,i θ,i is given in

figure 15, where the non-centred correlation coefficient ω2
i θ,2j /(ω

2
i ·θ,2j ) is shown.

Also included are εθ,2i /(ε·θ,2i ) and ω2
i ε/(ω

2
i ·ε). Note that these correlations are

related to the flatness factor of velocity-scalar mixed derivatives (Kerr 1985; Yeung,

Xu & Sreenivasan 2002). With this definition, ω2
i θ,2j /(ω

2
i ·θ,2j ) = 1 implies independence

between ωiωi and θ,i θ,i and therefore a zero correlation between ωi and θ,i (Kerr

1985). The present value of ω2
i θ,2j /(ω

2
i ·θ,2j ) is significantly greater than 1 across the

channel, in contrast with the value of about 1 in isotropic turbulence (Kerr 1985).
The Reynolds-number dependence is less likely to be observed between Reτ = 395 and
Reτ = 640 than between Reτ = 180 and Reτ = 395, due to the low Reynolds-number
effects (Antonia & Kim 1994a). Close to the wall, the largest magnitude appears,

and the similarity among ω2
i θ,2j /(ω

2
i ·θ,2j ), εθ,2i /(ε·θ,2i ) and ω2

i ε/(ω
2
i ·ε) is excellent,

consistent with the instantaneous visualizations in figure 13. Away from the wall, the

magnitude decreases with increasing y+, where the magnitude of εθ,2i /(ε·θ,2i ) is larger

than that of ω2
i θ,2j /(ω

2
i ·θ,2j ). This result suggests that θ,i θ,i is better correlated with ε

(or with the strain rate) than with ωiωi , which agrees with that in box turbulence with
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a constant mean scalar gradient (Kerr 1985; Ruetsch & Maxey 1991, 1992; Pumir
1994; Vedula et al. 2001; Brethouwer et al. 2003). The local peak at y+ = 30 does
not correspond to the centroid of the quasi-streamwise vortices (Kim et al. 1987)
but rather to the average height of the streaks (figures 8 and 13d). In this context,
Smith & Metzler (1983) suggested that the momentum streaks are barely noticeable
for y+ > 40. In the outer region, the magnitude is half that in the near-wall region. For

a homogeneous shear flow, Nomura & Elghobashi (1992) examined ω2
i θ,2j /(ω

2
i ·θ,2j ) and

reported values of 1.55 and 1.58 when S∗ = 0.15 and 0.14, respectively (S ≡ (dŪ1/dx2)).
In the present flow, this magnitude of S∗ occurs at y+ ≈ 100 (the distribution of S∗ is

not shown here). At this location, the magnitude of ω2
i θ,2j /(ω

2
i ·θ,2j ) is nearly identical

to that of Nomura & Elghobashi (1992).
It is more common to consider (centred) correlation coefficients defined by

ρφϕ ≡ (φ − φ̄)(ϕ − ϕ̄)

σφσϕ

, (6.1)

where φ and φ denote either θ,i θ,i , ωiωi or ε and σ is the standard deviation
of the centred variables. The correlation coefficients (ρω2

i θ,2j
and ρεθ,2i

) are non-zero

throughout the channel (the distributions are not shown here). Their magnitudes are
approximately the same (about 0.8) near the wall, whereas ρεθ,2i

is larger than ρω2
i θ,2j

away from the wall, the trend being consistent with that in the correlations (figure 15).
At the centreline, ρω2

i θ,2j
and ρεθ,2i

are about 0.1 and 0.3, respectively. The magnitude

of ρεθ,2i
was reported in several turbulent flows, e.g. turbulent jet (Antonia & Van

Atta 1975), atmospheric surface layer (Antonia & Chambers 1980), grid turbulence
(Zhou & Antonia 2000) and isotropic turbulence (Wang, Chen & Brasseur 1999;
Antonia & Orlandi 2003). The present value of ρεθ,2i

at the centerline is about twice
as large as for isotropic turbulence (Wang et al. 1999; Antonia & Orlandi 2003),
suggesting that θ,i θ,i is better correlated with ε in a turbulent channel flow than
in isotropic turbulence. This result is most likely associated with a larger degree of
anisotropy in a turbulent channel flow than in isotropic turbulence as discussed in § 3.

The correlations are further quantified by examining the joint p.d.f.s among
ωiωi, ε, Q and θ,i θ,i and are given in figure 16, where the shapes of the distributions
between ωiωi and ε agree with those of Blackburn et al. (1996) (figure 16a, b). Note
that these p.d.f.s are obtained from one instantaneous realization as in Blackburn
et al. (1996). Near the wall, there are strong correlations among ωiωi, ε, and θ,i θ,i ,
consistent with the correlations (figure 15), the correlation coefficients (not shown
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Figure 16. Joint p.d.f.s for Reτ = 640: (a), (b) ωiωi and ε; (c), (d) ωiωi and θ,i θ,i;
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here) and the instantaneous visualizations (figures 13 and 14). For y+ > 100, where
the departure from isotropy is nearly constant (figure 2b), the p.d.f.s are almost similar
to those for isotropic turbulence (e.g. Ruetsch & Maxey 1992; Jiménez et al. 1993;
Pumir 1994; Antonia & Orlandi 2003) and grid turbulence (Zhou & Antonia 2000). In
this region, the most intense θ,i θ,i occurs where ωiωi is negligible but ε shows small
values, whilst moderate values of θ,i θ,i tend to coincide with regions in which ωiωi is
large (figure 16c–f ). These considerations suggest that θ,i θ,i is associated with ωiωi

as well as ε throughout the channel, although the magnitudes of the correlations vary
across the flow.

In the near-wall region, Q < 0 (strain is dominant) is not the sole contributor to
θ,i θ,i . The near-wall joint p.d.f. (figure 16g) shows that Q > 0 (vorticity is dominant)
is associated with moderate magnitudes of θ,i θ,i . Also, ρθ,2i Q

(not shown here) exhibits
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a peak at y+ =10, where ω1 is important for the mixing (see ω1θ,3/ω
′
1θ,′

3 in figure 7a),
and its magnitude is nearly zero, indicating that the contribution of Q > 0 to θ,i θ,i
is almost equal to that of Q < 0. These results suggest that both quasi-streamwise
vortices (Q > 0) and straining motions (Q < 0), possibly induced by the streaks as
discussed in § 5 (see also figure 13), are correlated with θ,i θ,i . In the outer region
θ,i θ,i is associated with Q < 0 (the strain is dominant), as in isotropic turbulence
(Brethouwer et al. 2003). This result implies that θ,i θ,i is not directly related to
vortical motions (e.g. transverse vortices) but to straining motions induced by the
vortices and also the large-scale θ structures (see figure 14).

7. Conclusions
The present study has focused on conventional statistics for the vorticity and scalar

derivative vectors, using DNS databases for a fully developed turbulent channel flow
with a constant time-averaged heat-flux boundary condition. The data were obtained
at Pr = 0.71 and 3 values of the Reynolds number (Reτ = 180, 395 and 640); for the
largest Reynolds number, the spatial resolution is considered adequate for resolving
the smallest scales of interest. Particular attention has been given to the correlation
between the two vectors in both inner and outer regions of the flow. The salient
conclusions are given below for each region:

(a) Inner region

(i) The similarity between ω+
2 ω+

2 and θ,+3 θ,+3 as well as between ω+
3 ω+

3 and θ,+2 θ,+2
is excellent and reflects the strong near-wall correlation between u1 and θ . There is
also close similarity between the transport equations of ωiωi and θ,i θ,i in spite of a
discernible difference very close to the wall arising from the difference in boundary
conditions between the velocity and scalar fields.

(ii) The magnitudes of ω+
1 ω+

1 , ω+
3 ω+

3 and θ,+2 θ,+2 increase significantly very close
to the wall, as Reτ increases, mainly as the result of straining induced by the wall.

By contrast, the approximate independence on Reτ of θ,+2 θ,+2 and θ,+3 θ,+3 seems
consistent with the independence on Reτ of the spanwise streak spacing. Two-point
correlations of ω2 and θ,3 along the spanwise direction have a distinct negative peak
that is less dependent on Reτ than the peak observed in the spanwise two-point
correlations for either u1 or θ . This peak corresponds to an average width for either
low-speed or low-temperature streaks of about 30 wall units.

(iii) In the transport equations of ωiωi and θ,i θ,i , the magnitude of the mean
gradient production terms is of the same order as that of the turbulent production
terms. The latter terms have a preference to align with the mean strain rate. (Note that
unlike 2ωiωj sij , the mean strain rate is not necessarily associated with the increase in

−2θ,i θ,j sij , since the latter is only amplified by the compressive strain rate.) The
same is true for ωi and θ,i . The preferred alignment of ωi is with the direction of the
intermediate strain rate, whilst that of θ,i is at 45◦ to the extensional and compressive
strain rates respectively. Also, θ,i is more likely to be correlated with the compressive
strain rate than in isotropic turbulence, possibly due to the space-filling and persistent
features of the near-wall structures as well as the presence of the mean velocity and
temperature gradients.

(iv) The magnitudes of the correlation coefficients for ω1θ,3, ω2θ,3, ω3θ,1, ω3θ,2
are quite large. Streaks, quasi-streamwise vortices and internal shear layers all
contribute to these correlations albeit in different manners and amounts.

(v) Streaks, internal shear layers and quasi-streamwise vortices are intrinsic
topological elements of the scalar dissipation rate and are important for implementing
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small-scale scalar mixing. There is a strong correlation between the scalar dissipation
rate, the energy dissipation rate and the enstrophy. Nearly coincident isocontours
of ωiωi and θ,i θ,i are discerned around the circumference of streaks. The local
maximum near y+ � 30 for the correlation between ωiωi and θ,i θ,i corresponds
approximately to the average height of the streaks. The effect of vorticity (4.4), which
is essentially the effect of the quasi-streamwise vortices (ω1), cannot be neglected. Nor
can the effect due to the strain rate, possibly induced by the streaks.

(b) Outer region

(i) Each component of ω+
i ω+

i and θ,+i θ,+i approaches local axisymmetry for y+ > 60
and 100, respectively, the degree of anisotropy being likely to be associated with the
mean velocity and temperature gradients. The turbulent production terms, 2ωiωj sij

(4.1) and −2θ,i θ,j sij (4.2), are the sole contributors to the production process, since
the effect of the vorticity (4.4) can be neglected due to the small magnitude of the
mean temperature gradient.

(ii) In the transport equations of ωiωi and θ,i θ,i , the ratio of the mean gradient
production to the difference between the turbulent production and the dissipation rate
terms does not depend on the Reynolds number. This may be useful for modelling
the transport equation of εθ .

(iii) The alignment of ωi is with the direction of the intermediate strain rate, while
θ,i is along the compressive strain rate direction. The result agrees with that obtained
from DNSs for box turbulence with or without an imposed mean scalar gradient.

(iv) The correlation coefficients between ωi and θ,i and between ωiωi and θ,i θ,i ,
which are, by and large, caused by the presence of fronts or backs, are smaller than
in the wall region. Consistently, the similarity between u1 and θ large-scale structures
is reduced compared to that between the near-wall u1 and θ structures.

(v) Like enstrophy, the scalar dissipation rate has many characteristics in common
with other turbulent flows, e.g. homogeneous isotropic turbulence, homogeneous
sheared turbulence, grid turbulence and turbulent shear flows. The dominant
structures are sheetlike in shape and aligned with the compressive strain rate. Their
average thickness is approximately 6η or 7ηB or y+ > 100 and is unlikely to be
affected by the Reynolds number. The scalar dissipation rate is better correlated with
the energy dissipation rate than the enstrophy.

Overall, the present results indicate that whilst the correlations in the outer region
between the two small-scale fields exhibit similar features to those previously reported
for homogeneous flows, the correlations near the wall are quite different. In particular,
the large magnitudes of these correlations underline the important potential role of
the organized structures for enhancing small-scale mixing.
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Appendix. Validation of the computational accuracy
A few checks of the computational accuracy are provided by distributions at y/δ = 1

of k4
xφu(kx) and k4

zφu(kz) (figure 17a, c), normalized by the Kolmogorov scales (vK, η),
and k4

xφθ (kx) and k4
zφθ (kz) (figure 17b, d), normalized by the Batchelor scales (θB, ηB)
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Figure 17. Streamwise and spanwise spectra of u1 and θ multiplied by k4
x or k4

z at
y/δ = 1 normalized by the Kolmogorov scales (vK and η) and the Batchelor scales (θB and

ηB ) : (a) k∗4
x φu(kx)

∗; (b) k
†4
x φθ (kx)

†; (c) k∗4
z φu(kz)

∗; (d) k
†4
z φθ (kz)

†; – · – · – · Moser et al. (1999)
for Reτ = 590 at y/δ =1; −− · · −− · · −−, Kasagi et al. (1992) for Reτ = 150 at y/δ =1.

denoted by the superscript †. The streamwise and spanwise spectra of u1 and θ are
defined such that

u1u1 =

∫ ∞

0

φu(kx) dkx =

∫ ∞

0

φu(kz) dkz, (A 1)

θθ =

∫ ∞

0

φθ (kx) dkx =

∫ ∞

0

φθ (kz) dkz, (A 2)

where φu and φθ are the spectra of u1 and θ , respectively, and kx and kz the streamwise
and spanwise wavenumbers, respectively. For comparison, the spectra of Moser et al.
(1999) and Kasagi et al. (1992) at the centreline, which were obtained with spectral
methods, are included in figure 17. There is no energy pile-up in the present streamwise
and spanwise spectra multiplied by k4

x and k4
z at high wavenumbers. The agreement

between the present spectra and those of Moser et al. (1999) is satisfactory. The
poor agreement with Kasagi et al. (1992) at high wavenumbers is likely to have been
caused by the insufficient spatial resolution in their simulations. The adequate closure
(or convergence) of the present spectral distributions indicates that the present spatial
resolution is sufficient to enable the derivatives which appear in the vorticity and
scalar dissipation rate to be estimated reliably.

The transport equations of the turbulent kinetic energy, k(≡ (u2
1 + u2

2 + u2
3)/2), and

the temperature variance, kθ (≡ θ2/2), provide a useful indirect check of how well the
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Figure 18. Budgets of the turbulent kinetic energy and the temperature variance for Reτ =
180, 395 and 640: (a) k; (b) kθ , − − −, Reτ = 640; · · · · · · · · ·, Reτ = 395; – · – · – · , Reτ = 180; - -
- - - - -, Moser et al. (1999) at Reτ = 180, 395 and 590; , Abe et al. (2004b) at Reτ = 1020;
−− · · −− · · −−, Kasagi et al. (1992) at Reτ = 150.

destruction terms are estimated. The transport equation of k, normalized by u4
τ /ν is

0 = −u+
i u+

k

∂Ū+
i

∂x+
k︸ ︷︷ ︸

1

− ∂

∂x+
k

(
1

2
u+2

i u+
k

)
︸ ︷︷ ︸

2

− ∂

∂x+
i

(
1

2
u+

i p+

)
︸ ︷︷ ︸

3

+
∂2

∂x+2
k

(
1

2
u+2

i

)
︸ ︷︷ ︸

4

−
(

∂u+
i

∂x+
k

)2

︸ ︷︷ ︸
5

,

(A 3)
where terms 1, 2, 3, 4, 5 denote the production, turbulent diffusion, pressure
diffusion, molecular diffusion and homogeneous dissipation rate, respectively. Also,
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the transport equation of kθ , normalized by u2
τ T

2
τ /ν, is

0 = −θ+u+
j

∂Θ̄+

∂x+
j

+ θ+u+
1

∂〈T̄m〉+

∂x+
1︸ ︷︷ ︸

1

− ∂

∂x+
j

(
1

2
θ+2u+

j

)
︸ ︷︷ ︸

2

+
1

Pr

∂2

∂x+2
j

(
1

2
θ+2

)
︸ ︷︷ ︸

3

− 1

Pr

(
∂θ+

∂x+
j

)2

︸ ︷︷ ︸
4

,

(A 4)

where terms 1, 2, 3, 4 are the production, turbulent diffusion, molecular diffusion
and dissipation, respectively. Note that in (A 3), the homogeneous dissipation εhom

is used instead of the full epsilon ε. Figure 18(a, b) shows the budgets of k and kθ

respectively; the data of Abe et al. (2004b) at Reτ =1020 and Pr= 0.71 have been
included. Agreement with the existing DNS data (the data of Kasagi et al. 1992 at
Reτ = 150 and Pr =0.71 and Moser et al. 1999 at Reτ = 180, 395 and 590) is quite
good. The significant Re dependence in the near-wall region conforms with the low Re
effects reported by Antonia & Kim (1994a). The maximum value of the production
reaches 0.243 at Reτ = 1020, which is very close to its asymptotic value (1/4). The
distributions in figure 18(b) are very similar to those in figure 18(a), notwithstanding
the absence of the pressure in (A 4). For Reτ � 395, the magnitude of the production
is Pr/4, which is the theoretical maximum value. This suggests that the thermal field
reaches local equilibrium at a smaller Reτ than the velocity field.
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Jiménez, J., Wray, A. A., Saffmann, P. G. & Rogallo R. S. 1993 The structure of intense vorticity
in isotropic turbulence. J. Fluid Mech. 255, 65–90.

Johansson, A. V., Alfredsson, P. H. & Kim, J. 1991 Evolution and dynamics of shear-layer
structure in near-wall turbulence. J. Fluid. Mech. 224, 579–599.

Johansson, A. V. & Wikström, P. M. 1999 DNS and modelling of passive scalar transport in
turbulent channel flow with a focus on scalar dissipation rate modelling. Flow Turb. Combust.
63, 223–245.

Kasagi, N. Tomita, Y. & Kuroda, A. 1992 Direct numerical simulation of passive scalar field in a
turbulent channel flow. ASME J. Heat Transfer 144, 598–606.



Small-scale velocity and scalar fluctuations in a channel flow 31

Kasagi, N. & Ohtsubo, Y. 1993 Direct numerical simulation of low Prandtl number thermal field
in a turbulent channel flow. In Turbulent Shear Flows 8 (ed. F. Durst, R. Friedrich, B. E.
Launder, F. W. Schmidt, U. Schumann and J. H. Whitelaw), pp. 97–119, Springer.

Kawamura, H., Abe, H. & Matsuo, Y. 1999 DNS of turbulent heat transfer in channel flow with
respect to Reynolds and Prandtl number effects. Intl J. Heat Fluid Flow 20, 196–207.

Kawamura, H., Abe, H., Matsuo, Y. & Choi, H. 2002 Large-scale structures of velocity and
scalar fields in turbulent channel flows. In Intl Symp. on Dynamics and Statistics of Coherent
Structures in Turbulence: Roles of Elementary Vortices, pp. 49–64, Tokyo.

Kawamura, H. Abe, H. & Shingai, K. 2000 DNS of turbulence and heat transport in a channel
flow with different Reynolds and Prandtl numbers and boundary conditions. In Proc. of the
3rd Intl Symp. on Turbulence, Heat and Mass Transfer (ed. Y. Nagano, K. Hanjalic and T.
Tsuji), pp. 15–32, Aichi Shuppan.

Kawamura, H., Ohsaka, K., Abe, H. & Yamamoto, K. 1998 DNS of turbulent heat transfer in
channel flow with low to medium–high Prandtl number fluid. Intl J. Heat Fluid Flow 19,
482–491.

Kerr, R. M. 1985 Higher-order derivative correlations and the alignment of small-scale structures
in isotropic numerical turbulence. J. Fluid Mech. 153, 31–58.

Kim, J. 1988 Investigation of heat and mass transport in turbulent flows via numerical simulation.
In Transport Phenomena in Turbulent Flows: Theory, Experiment and Numerical Simulation
(ed. M. Hirata & N. Kasagi), pp. 157–170. Hemisphere Publishing.

Kim, J. & Moin. P. 1989 Transport of passive scalars in a turbulent channel flow. In Turbulent
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